Advanced Mathematics for Engineers

ABSTRACT

Signal processing consists of the analysis of signals by using
mathematical theorems and software simulators, another
important concept for engineers is the analysis of complex circuits
by using Laplace Impedance Modelling.

INTRODUCTION

This report aims to explain some of the most essential topics in
engineering by applying software simulators such as MATLAB
and hand calculations, demonstrating the importance and
procedure of some theorems such as Shannon’s theorem and the
application of Laplace transform in complex circuits.
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1. DISCRETE TIME AND ALIASING
1.1 Continuous Time Signal.
1.1.1 Time base.

A continuous time signal depends on the time. To produce a
sequence of values in time, a time-base is required (Equation 1),
using these values concerning time is possible to recreate a
sinusoidal signal.

=0:0.001:2

Equation-1: Time-based.

1.1.2 Sinusoidal wave.

Using the time base was possible to represent the sinusoidal wave
formed from sine and cosine waves with different frequencies
(Figure 1). Combining the different signals (Equation 2), it was
possible to recreate the continuous time signal in MATLAB
(Figure 2).

()=sin(83)—cos(2)+sin(9 ) +cos(7)

Equation-2: Sinusoidal wave.

Angular Frequency (w) | Convert |Frequency (f)
3rad/s 0.4775 Hz
w
2 rad/s 0.3183 Hz
9rad/s 27-[ 1.4324 Hz
7 rad/s 1.1141 Hz

Figure-1: Frequencies table.
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Figure-2: Sinusoidal wave

To convert this analogue signal into digital signals, the analogue
signal must be sampled by using the highest frequency. This can
be obtained by converting from radians to Hertz the sinusoidal
equation.

1.2 Discrete Signal.
To avoid under-sampling and produce aliasing, it is important to
follow Shannon’s theorem (Figure 3)

Continuous Nyquist
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Figure-3: Procedure diagram.

Using a software simulator such as MATLAB, it is possible to
represent and calculate the samples and recreate the discrete
signal (Figure 4).

%% Discrete Signal Workout
T=1/f3; %% Period

fn=F3; %% Nyquist Frequency
fnr=2*fn; %% Nyquist Rate
fs=fnr*5; %%Sampling Frequency
Ts=1/fs; %% Sampling period
N=T/Ts; %% Number of Samples
n=0:1:3*N-1; %% Integer Index
nTs=n*Ts; %% Sampling Interval

Figure-4: Discrete signal workout in MATLAB.

1.2.1 Period and Nyquist frequency.

Once the highest frequency was found, it was possible to obtain
the sinusoidal wave period by calculating the frequency inverse
(Equation 3).

e 1
f
s 1
T 1.4324
T = 0.6981

Equation-3: period.

T=1/f3; %% Period
T =

Figure-5: Period code in MATLAB.

Another important parameter is the Nyquist frequency for this
task, the Nyquist frequency will be the highest frequency in the
analogue signal (Equation 4).



fh =:f
1.4324 = 14324

Equation-4: Nyquist frequency.

fn=F3; %% Nyquist Frequency
fn =

1.4324
Figure-6: Nyquist frequency code in MATLAB.

1.2.2 Nyquist rate and sampling frequency.

Nyquist rate is the minimum sampling rate at which a signal can
be sampled and still being able to be reconstructed without being
affected by distortions (Equation 5). This parameter is important
to avoid over-sampled or under-sampled signals [1].

j;r =2 *f;
far = 2%1.4324
fur = 2.8648

Equation-5: Nyquist rate.

fnr=2*fn; %% Nyquist Rate
fnr =

2.8648

Figure-7: Nyquist rate code in MATLAB.

In theory, a signal can be reconstructed from its samples by using
a sampling frequency more than twice the Nyquist rate [2] for this
signal, the Nyquist rate was multiplied by five (Equation 6).

fs=far=b
£, =2.8648+5
f, = 143239

Equation-6: Sampling frequency.

fs=Ffnr*5; %%Sampling Frequency
fs =

14.3239

Figure-8: Sampling frequency code in MATLAB.

1.2.3 Sampling period and the number of samples.
With the sampling frequency was possible to obtain the sampling
period by calculating the inverse of the sampling frequency. This
value represents the difference between two consecutive samples
(Equation 7).

.l
T f
1
s = 123239
T, = 0.0698

Equation-7: Sampling period.

Ts=1/fs; %% Sampling period
Ts =

0.0698

Figure-9: Sampling period code in MATLAB.

The number of samples represents the minimum number of
samples required to reconstruct the signal; this value is calculated
by dividing the period over the sampling period (Equation 8).

0.6981
"~ 0.0698
N =10

Equation 8: Number of samples.

N=T/Ts; %% Number of Samples

N =

10

Figure-10: Number of samples in MATLAB.

1.2.4 Integer index and sampling interval.

The integer index was represented in MATLAB (Figure 11) to
display the number of samples. The number of samples is a whole
number, and the increment applied in the code is a whole number
(Equation 9).

n=0:1:3*N-1; %% Integer Index

Figure-11: Integer index code.

n=0:1.N-1
n=0:1:10-1
n=190:1:9

Equation-9: Integer index.

Using the integer index was possible to obtain the value of each
sample respect in time by multiplying the sampling period by the
integer index (Equation 10).

Equation-10: Sampling interval.

1.2.5 Result.
Once all the values have been found, the discrete signal was
obtained (Figure 12), this signal is not continuous, and it is
represented by the samples obtained applying Shannon’s Theorem
(Equation 11).

[ 1=sin(3

)—cos(2 )+sin(9 )+cos(7 )

Equation-11: Discrete signal.
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Figure-12: Discrete Signal.

If the two waves are plotted in the same graph, it is possible to
observe how the samples of the discrete signal match the
continuous time signal (Figure 13).
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Figure-13: Discrete and continuous signal.

1.3 Verification

To verify that the values obtained using MATLAB, the values
from the discrete signal have been obtained by hand calculations,
obtaining similar results. To keep the similarity, a minimum of

four decimals have been used for the result.

N° of sample |Sample Period | X Coordinate
0 0.0698 0
1 0.0698 0.0698
2 0.0698 0.1396
3 0.0698 0.2094
4 0.0698 0.2792
5 0.0698 0.349
6 0.0698 0.4188
7 0.0698 0.4886
8 0.0698 0.5584
9 0.0698 0.6282

10 0.0698 0.698
11 0.0698 0.7678
12 0.0698 0.8376
13 0.0698 0.9074
14 0.0698 0.9772

Figure-14: Hand calculations.

1
i d
2 0.0698
3 0.1396
4 0.2094
5 0.2793
6 0.3491
7 04189
8 0.4887
9 0.5585
10 0.6283
11 0.6981
12 0.7679
13 0.8378
14 0.9076
15 09774

Figure-15: MATLAB results.
1.4 Aliasing.

If Shannon’s Theorem has not been applied, a phenomenon called
aliasing can occur. This phenomenon is produced by a low
sampling rate, this can be caused for noise contained inside the
signal that is going to be reconstructed. This noise can contain
higher frequencies that will affect the sampling, this means that if
the sampling rate is not at least twice the higher frequency at the
moment of sampling the signal, the result will produce an alias.
The alias is the representation of an under-sampling signal [2] this
can cause the loss of information, distortion in the signal obtained
(Figure 17), and a false frequency.

Aliasing can be prevented by using Shannon’s theorem; however,
the signal may contain noise. To avoid aliasing, it is possible to
increase the Nyquist rate by a factor of five, another possibility is
to use a low pass filter circuit to block the frequencies above the
Nyquist frequency. With these higher frequencies removed, it is
possible to sample the signal without creating an alias of the
original signal [3].

To prove the phenomenon of aliasing, the same signal was
sampled without following Shannon’s Theorem, for example, the
frequency used to sample the discrete signal was not the highest
frequency, and the Nyquist rate was not twice the highest
frequency, this produces a different discrete signal (Figure 16)
and an alias (Figure 17).
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Figure-16: Aliasing
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Figure-17: Alias produced by aliasing.

To obtain the frequency that produces the aliasing is required to
subtract the original frequency minus the frequency used for the
sampling [4] once the frequency is obtained, it is possible to
obtain the period.

2. LAPLACE TRANSFORMS AND
TRANSIENT ANALYSIS

2.1 Laplace Impedance Modelling

Laplace transform can be used to solve and analyse different
circuits. This method converts circuits in the time domain into
complex frequency domain circuits. This will allow working
easily with components with a nonzero condition at time equals
zero [5], to prove this, a circuit has been designed in the time
domain (Figure 18).
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Figure-18: Circuit.

To analyse a circuit with an initial condition, it is necessary to
convert all the components in the circuit into the Laplace domain,
for example, the resistor (Equation 12), the inductor with the
initial condition (Equation 13) and the voltage sources (Equation
14)

Ve(t) = R ia (1)
VR'[S) =R=* IIR'[S)

Equation-12: Laplace transform of a resistor.

diy
dt
Vi (s) = sLI(s) — Li(07)

VL (t) =1L

Equation 13: Laplace transform of an inductor.

O =
Equation-14: Time domain to Laplace domain.

Once all the components have been converted into the Laplace
domain, a new component is added to the circuit (Figure 19), this
component is a voltage source, and it was obtained from the
transfer function of the inductor [6].

z1 73

@ Vi (s) VL

11 (s) 75 12 (s)
— |;| z4

Figure-19: Circuit in the frequency domain.

2.2 Current equations

When circuits become more complicated, different types of
methods can be used, for example, mesh analysis can be used to
analyse this circuit, this method is based on Kirchhoft’s laws and
can be used to solve complex circuits by solving the simultaneous
equation (Equation 16) with the branch currents [7].

Vl +VL = {Z; +Zg +L)fl —{Zg +L)12
VotV =(Za+ L) —(Z2+Z3+Z4 + L)5

Equation-15: Current equations.

Once the simultaneous equations for each current have been
obtained, it is possible to convert them into a matrix and solve
them using Crammer’s rule (Equation 17).

g B |
Ly

S Vi+V,
%y A VZ+VL]

Equation-16: Matrix equation.

The matrix determinant is obtained (Equation 18).

— 1l o+ 3+ 4+ )= (4t 3)— 2( 4+ 3)

Equation-17: Determinant.

To solve it for each current, it is required to obtain the
determinant of current one and current two, then these values will
be divided by the initial determinant obtaining the symbolic
equation for current one and current two.

4V .
Vo Wy —Zy = By

Wt Ty Zy 4 L) = VlZ b)) =W %)

Equation-18: Current one determinant.



Lo il W
L+Z, Va4V

—Z; (Va4V,) — Vo (L+2Z;) — Vi(L+Z5)

Equation-19: Current two determinant.

[ o TNZeAZs 4 2+ 1)~ Vi (2t Zy) — Va(L4Zs)
T —Z(Z.+E, + I, + L) — L(Z,+Z,) — (2, +Z5)

< =2, (Vo V) = Vo (L+Z,) -V (L+Z;)
T L (Z, A+ Z,+ LY — L(Z,+Z) — Z.(Z,+L,)

Equation-20: Current one and two symbolic equations.

2.3 MATLAB

A MATLAB code has been designed to allow the user to
introduce data (Figure 20) and obtain the transfer response of the
system produced by the value of the components used.

4] Figure = o 4 Compone.. — X
File Edit View Insert Tools Desktop Window Help

Qode @ 08| KE

* Voliage V1 Volis)

| Votage V2 Volis}
initial condition iL(0) (Volts):
Impedance Z1 (Ohms):
Impedance 22 (Ohms):
Impedance 73 (Ohms):

Impedance Z4 (Ohms):

Inductor L (Henries):

=
Figure 20: MATLAB dialogue box.

Components |Value
Vi 4v
Vs 3V
v 0.4V
L 0.3
Ry 330
R, 27Q
R; 750
R, 560

Figure 21: Components.

The MATLAB code incorporates the symbolic equations for each
current. Once the values of the component are introduced in
MATLAB, the transfer function for current one and current two
will be obtained.

1y 5275 1551

1) = 9357+ 87515
ey L 129572
2(8) = 39357 v 8751

Equation-21: Transfer function of current one and two.

Using the transfer function, it was possible to plot the impulse
response of each current (Figure 21).
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Figure-22: Laplace domain impulse response.

2.4 Inverse Laplace.

It is possible to obtain the continuous time domain equation for
each current by applying the inverse Laplace transform, using the
Laplace table, and applying the Partial Fraction Expansion
techniques, the equation for current one and current two were
obtained.

I, ()1.008e~ 17787t 4+ 0.0629t
I(£) — 0.252¢ 717787t _ 00082t

Equation-22: Inverse Laplace transform of current one.

Using these equations, it is possible to verify that the impulse
response in the Laplace domain is the same impulse response
obtained in the time domain (Figure 23).
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Figure-23: Laplace domain and Time domain impulse
response.
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Figure 24: Comparison.
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Appendix

X(t) = sin(3t) — cos(2t) + sin(9t) + cos(7t)

. N t
Con!:lnuous et yquis Nyquist Rate
Signal Frequency

_1 = =2+f
— H m n
f
Number of Sampling Sampling
Samples Period Frequency
N = 1 T i fs = far*
T fs

Integer Index

Sampling
Interval

Discrete Signal

n=01:N-—1

nl, =n=*>T;

X[n] = sin(3nTy) — cos(2nT;) + sin(9InT;) + cos(7nT;)




%% DISCRETE TIME AND ALIASING

%% Time Base
t = 0:0.001:2;

%% Frequency values
f1=3/(2*pi);
F2=2/(2*pi);
£3=9/(2%pi);
f4=7/(2*pi);

%% Continuous Signal
X_t=sin(3*t)-cos(2*t)+sin(9*t)+cos(7*t);

%% Plot the graph

figure (1)

subplot(3,1,1) %% Subplot 1
plot(t,X _t, 'LineWidth',2) %% Display graph
grid %% Grid command

hold on

%% Style of the Graph 1

ax=gca; % Command to change the axis without change the labels
ax.XLim=[© 2] % Limit values of axis Y

title('Sinusoidal wave', 'FontSize',14, 'FontWeight', "bold’, 'color', 'black’)
xlabel('Time (s)', 'FontSize',12, 'FontWeight', 'bold', 'color', 'black")
ylabel( 'Magnitude’, 'FontSize',12, 'FontWeight', 'bold’, 'color’, 'black")
%% Discrete Signal Workout

T=1/f3; %% Period

fn=F3; %% Nyquist Frequency

fnr=2*fn; %% Nyquist Rate

fs=fnr*5; %%Sampling Frequency

Ts=1/fs; %% Sampling period

N=T/Ts; %% Number of Samples

n=0:1:3*N-1; %% Integer Index

nTs=n*Ts; %% Sampling Interval

%% Discrete Signals
Xn_1=sin(3*nTs);
Xn_2=cos(2*nTs);
Xn_3=sin(9*nTs);
Xn_4=cos(7*nTs);
Xn=Xn_1-Xn_2+Xn_3+Xn_4;



%% Plot Discrete Signal

subplot(3,1,1)

stem(nTs,Xn, 'LineWidth',1, 'color', 'r'")
saveas(gcf, 'graphl.jpg')

hold off

%% Discrete Signal Alias Workout

T A=1/f1; %% Period

fn_A=f1l; %% Nyquist Frequency
fnr_A=fn_A; %% Nyquist Rate
fs_A=fnr_A*5; %%Sampling Frequency
Ts_A=1/fs _A; %% Sampling period

N A=T A/Ts_A; %% Number of Samples
n_A=0:1:3*N_A-1; %% Integer Index
nNTs_A=n_A*Ts A; %% Sampling Interval

%% Discrete Signals Alias
Xn_1A=sin(3*nTs_A);
Xn_2A=cos(2*nTs A);
Xn_3A=sin(9*nTs_A);
Xn_4A=cos(7*nTs_A);
Xn_A=Xn_1A-Xn_2A+Xn_3A+Xn_4A;




%% Plot the graph Alias with Interpolation
subplot(3,1,2) %%
grid %% Grid command

hold on

%X_A = linspace(min(nTs_A), max(nTs_A), 100);

%Y A = spline(nTs_A, Xn_A, X A);

plot(nTs_A,Xn_A, 'LineWidth',2)

%%plot(X_A, Y_A, 'LineWidth',2)

%% Style of the Graph Alias

ax=gca; % Command to change the axis without change the labels
ax.XLim=[© 2] % Limit values of axis Y

title('Aliasing’, 'FontSize',14, 'FontWeight', 'bold’, 'color', 'black")
xlabel('Time (s)', 'FontSize',12, 'FontWeight', 'bold', 'color', "black’)
ylabel('Magnitude’, 'FontSize',12, 'FontWeight', 'bold’, 'color’, 'black")
%% Plot Discrete Signal Alias

subplot(3,1,2)

stem(nTs_A,Xn_A, 'LineWidth',1, 'color’, 'r")

hold off

%% Alias number 2

%% Plot the graph Alias with Interpolation

subplot(3,1,3) %% Subplot of the Alias with interpolation

grid %% Grid command

hold on

%% Interpolation command

X_A = linspace(min(nTs_A), max(nTs_A), 188);

Y A = spline(nTs_A, Xn_A, X A);

plot(X_A, Y_A, 'LineWidth',2) %% plot the alias

stem(nTs_A,Xn_A, 'LineWidth',1, 'Color', 'r') %% plot the discrete signal

%% Style of Graph Alias

ax=gca; % Command to change the axis without change the labels

ax.XLim=[@ 2] % Limit values of axis Y

title('Aliasing with interpolation', 'FontSize',14, 'FontWeight', 'bold', 'color', 'black’)
xlabel('Time (s)', 'FontSize',12, 'FontWeight', 'bold’, 'color', "black’)
ylabel('Magnitude', 'FontSize',12, 'FontWeight', 'bold', 'color', 'black")

hold off

saveas(gcf, 'graph.jpg') %% Save the graph



¢ I [ X
0O 0.0698 O
1 00698 0.0698
2 0.0698 0.1296
3 ©.0698 0.2094
4 00698 09799
5 0.0698 0.249
6 0.0698 0.4188
T 0.0698 0.M886
8 0.0698 0.5584
9 0.0698 0,628k
o 0.06%8 0.698
11_0.0698 0.1638
12 0.0698 0.83%6
132 0,0698 O0S90*th
4 00,0698 049172
%% TASK 2
%% Display the image
f=figure('Position',[80 50 400 317]); %% Image coordinates
image=imread("circuitl.png"); %% Image of the circuit
imshow(image); %% Show the images
pause(4)
%% Dialogue box %%
dlgtitle = 'Component values';%% Name of the dialogue box
prompt={'Voltage V1 (Volts):', 'Voltage V2 (Volts):','initial condition VL(®©
dims=[1 40]; %% Dimensions of the text box
answer = inputdlg(prompt,dlgtitle,dims); %% user data
%% Convert to numbers
V_1 = str2num(answer{l}); %% Value V1
V_2 = str2num(answer{2}); %% Value V2
VL = str2num(answer{3}); %% Value VL

Z1 = str2num(answer{4}); %% Value Z1
Z2 = str2num(answer{5}); %% Value Z2
Z3 = str2num(answer{6}); %% Value Z3
Z4 = str2num(answer{7}); %% Value Z4
ZL = str2num(answer{8}); %% Value ZL



%% Components

syms s; %% Matlab toobox
s=tf('s"'); %% Convert s in transfer function
V1=V_1/s; %% V1 transfer function
V2=V_2/s; %% V2 transfer function
Z1=33; %% Value for R1

22=27; %% Value for R2

Z3=75; %% Value for R3

Z4=56; %% Value for R4

L=ZL*s; %% L transfer function
VL=0.4; %% VL transfer function

%% DETERMINANT
det=(Z1+Z2+L)*(-L-Z2-Z3-Z4)-(+L+Z2)*(-Z2-L); %% Determinant of the matrix

%% DETERMINANT Il
D I1=(V1+VL)*(-L-Z2-Z3-Z4)-(VL+V2)*(-Z2-L) %% Determinant of the current Il

%% I1 TF
I1=D I1/det; %% Current one value

%% DETERMINANT I2
D_I2=(Z1+Z2+L)*(VL+V2)-(L+Z2)*(V1+VL); %% Determinant of the current I2

%% I2 TF

I2=D_I2/det; %% Current two value
figure(2)

subplot(3,1,1) %% Subplot number one
impulseplot(I1l) %% Impulse response Il
hold on

impulseplot(I2) %% Impulse response 12

%% Graph style

title('Impulse Response (s)','FontSize',12, 'FontWeight', 'bold', 'color’,'bla
legend( 'Current I1', 'Current I2','FontSize',10, 'FontWeight', 'bold")
xlabel('Time', 'FontSize',10, 'FontWeight','bold’, 'color', "black")

ylabel( 'Amplitude’, 'FontSize',10, 'FontWeight', 'bold", 'color’', 'black’)

grid

hold off



%% Transient Response %%

t=0:0.0001:0.035; %% Time base for the time-domain

%% Current 1

I 1=(1.008*exp(-177.87*t))+0.0629; %% Current response in time domain
subplot(3,1,2) %% Subplot 2

plot(t,I_1) %% Plot of the I1(t)

hold on

%% Current 2

I 2=(-0.254%exp(-177.87*t))-(0.0082) ;%% Current response in time domain
subplot(3,1,2) %% Subplot 2

plot(t,I_2) %% Plot of the I2(t)

%% Graph style

title('Impulse Response (t)', 'FontSize',12, 'FontWeight','bold', 'color’, 'bl:
legend('Current I1','Current I2','FontSize',10, 'FontWeight', 'bold")
xlabel('Time (s)', 'FontSize',10, 'FontWeight', 'bold', 'color’', 'black"')
ylabel('Amplitude’', 'FontSize',10, 'FontWeight', "bold’, 'color', "black")
grid

hold off

%% time and laplace graph

subplot(3,1,3) %%Subplot 3

impulseplot(I1l) %% Impulse response Il

hold on

impulseplot(I2) %% Impulse response I2

%% Graph style

plot(t,I 1, 'LineStyle','--",'Color', 'magenta’, 'LineWidth',2) %% I1(t) Plot
plot(t,I 2, 'LineStyle','--",'Color', 'green', 'LineWidth',2) %% I2(t) Plot
title('Impulse Responses in time domain and Laplace domain', 'FontSize',12,"
legend('Current I1(s)','Current I2(s)','Current I1(t)','Current I2(t)','Fon
xlabel('Time', "FontSize',12, "FontWeight', 'bold', 'color', 'black’)

ylabel( 'Amplitude’, 'FontSize',12, 'FontWeight', 'bold’, "'color’, 'black")

grid

saveas(gcf, "both.jpg")

hold off
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